Die aus den röntgenographischen Angaben berechnete Dichte ϱ ist bei α -Cu(NH₃)₂Br₂, sowie β -Cu(NH₃)₂Br₂: 3,200 g.cm.⁻³.

Frau Prof. Dr. K. Boll-Dornberger gilt mein herzlichster Dank für viele klärende Diskussionen und wertvolle Hinweise. Die Arbeit wurde im Institut für Kristallstrukturanalyse der Deutschen Akademie der Wissenschaften beendigt. Herrn Gažo möchte ich an dieser Stelle für die Überlassung des Untersuchungsmaterials herzlich danken.

Literatur

Gažo, J. (1959). Chem.zvesti. 13, 3.

HANIC, F. & CAKAJDOVÁ, I. A. (1958). Acta Cryst. 11, 610.

HARKER, D. (1936). Z. Kristallogr. 93, 136.

PAULING, L. (1940). The Nature of Chemical Bond, p. 179. London: Oxford University Press.

Acta Cryst. (1959). 12, 744

The Crystal Structure of Cesium Tetrabromozincate, Cs₂ZnBr₄

BY B. MOROSIN AND E. C. LINGAFELTER

Department of Chemistry, University of Washington, Seattle 5, U.S.A.

(Received 26 May 1959)

The crystal structure of Cs_2ZnBr_4 has been determined by three-dimensional Fourier (difference) methods. The structure is essentially the same as that of Cs_2ZnCl_4 , with 4 molecules in a cell of dimensions $a_0 = 10.196$, $b_0 = 7.770$, $c_0 = 13.517$ Å, space group *Pnma*. The $ZnBr_4^{-2}$ tetrahedron is appreciably distorted by the steric 'pressure' of one neighboring Cs⁺ ion.

Introduction

The crystal structure of Cs₂CoCl₄ has been reported by Poraj-Koshitz (1956) and Cs₂ZnCl₄ has been shown to be isomorphous by Brehler (1957). The reported structure is of the K₂SO₄ type, containing tetrahedral MX_4^{-2} ions. Cs₂CuCl₄ has a structure (Helmholtz & Kruh, 1952) which is quite similar except for a marked distortion of the CuCl₄⁻² group. We are at present investigating other structures of the type Cs₂MBr₄ and report at this time the crystal structure of Cs₂ZnBr₄.

Experimental

Crystals of Cs_2ZnBr_4 were grown by evaporation at room temperature of an aqueous solution containing stoichiometric proportions of CsBr and ZnBr₂. The colorless, orthorhombic crystals were lath-like, bounded by (011) and (001) and terminated by (100).

Precession and equi-inclination Weissenberg photographs were taken with copper $K\alpha$ radiation ($\lambda = 1.5418$ Å).

The following cell dimensions were obtained by superimposing NaCl ($a_0=5.63874$ Å) rotation photographs on the same films with Cs₂ZnBr₄ rotation and Weissenberg photographs.

$$a_0 = 10.196 \pm 0.018, \ b_0 = 7.770 \pm 0.006, \ c_0 = 13.517 \pm 0.023 \ \text{Å}.$$

Systematic absences of (0kl) for k+l odd and of (hk0) for h odd indicated the space group to be *Pnma* or $Pn2_1a$.

Comparison of the axial ratios of Cs_2ZnCl_4 (1·317:1·000:1·755; Brehler, 1957) and Cs_2ZnBr_4 (1·312:1·000:1·730) and also of the general appearance of their Weissenberg photographs suggests that the structures are similar. Therefore the space group *Pnma* with 4 molecules per cell was initially assumed and later verified by the final structure.

Partial three-dimensional data (i.e. h0l through h5l) were collected by means of a non-integrating Weissenberg camera. The number of observed reflections was 553. The diffraction spots were scanned by means of a photometer and relative peak heights were obtained and used as intensities, being placed on an absolute scale by comparison with calculated values at a later stage of the structure determination.

Correction for absorption was made by interpolation from the table given by Bradley (1935); Lorentz and polarization factors were applied and structure factors calculated using Thomas & Umeda (1957) scattering factors. Calculations were carried out on an IBM type 650 computer.

Determination of the structure

Initial coordinates used were those for Cs_2ZnCl_4 (Brehler, 1957), and refinement of positions and temperature factors proceeded by a few Fourier sections and several difference syntheses. A final reliability index of 0.114* was obtained. The reliability index for special classes of reflections are as follows:

^{*} The table of calculated and observed structure factors may be obtained from E. C. Lingafelter.

h0l: 0.125		
h1l: 0.119	h+l=2n,	k = 2n : 0.117
h2l: 0.092	h+l=2n,	k = 2n + 1 : 0.113
h3l: 0.112	h+l=2n+1,	k = 2n : 0.100
h4l: 0.109	h+l=2n+1,	k = 2n + 1 : 0.127
h5l: 0.150		

Atomic positions and individual isotropic temperature factors are listed in Table 1. All atoms are in positions

Table	1.	Atomic	positional	parameters	and	temperat	ure
			factors for	Cs_2ZnBr_4			

	\boldsymbol{x}	\boldsymbol{y}	z	B
Cs ₁	0.6378	0.2500	0.3966	5.100
Cs,	0.4766	0.2500	0.8284	2.500
Zn	0.2356	0.2500	0.4214	2.500
Br ₁	0.0030	0.2500	0.4021	3.300
Br_2	0.3109	0.2500	0.5904	3.650
Br_3	0.3255	0.0000	0.3461	4.550

(4c) except Br₃ which is in (8d). The standard deviations in the parameters, calculated according to Cruickshank (1949), are 0.004 Å for Cs, 0.008 for Zn, and 0.007 for Br.

Discussion

The crystal structure of Cs_2ZnBr_4 is essentially the same as that of Cs_2ZnCl_4 , consisting of Cs^+ and tetrahedral $ZnBr_4^{-2}$ ions. Bond lengths and angles in the $ZnBr_4^{-2}$ are listed in Table 2, along with their standard deviations. The average Zn-Br distance, 2.391 Å ($\sigma = 0.01$ Å) may be compared with 2.38 Å found in $Zn(NH_3)_2Br_2$ (MacGillavry & Bijvoet, 1936).

Table 2. Bond lengths and angles in Cs₂ZnBr₄

ZnBr ₁	$2.386 \text{ \AA} \pm 0.010$	Br ₁ ZnBr ₂	$114.9 \pm 0.37^{\circ}$
ZnBr,	2.410	Br_1ZnBr_3	109.7
ZnBr,	2.377	Br_2ZnBr_3	106.4
		Br_3ZnBr_3	109.6

The $\text{Zn}\text{Br}_4^{-2}$ tetrahedron appears to be significantly distorted, the difference (5.4°) between the $\text{Br}_1\text{Zn}\text{Br}_2$ angle and the normal tetrahedral angle being more than ten times the standard deviation. The appearance of this large angle coupled with the small angle between Br_2 and the two Br_3 atoms indicates that Br_2 has been displaced from its normal tetrahedral position. The significance of this displacement becomes apparent upon consideration of the temperature factors and environment of the Cs⁺ ions. The distances to the nearest neighboring Br^- for each Cs⁺ ion are listed in Table 3. It is to be noted that seven (7) neighboring

Table 3. Neighboring by	romide	e rons
-------------------------	--------	--------

	$Cs_{(1)}$ at	$0.6378, \frac{1}{4}, 0.3966$	
\boldsymbol{x}	\boldsymbol{y}	z	Dist. (Å)
1.0030	ł	0.4021	3.724
$0.3255 \\ 0.3255$	0 1	$0.3461 \\ 0.3461$	3 ·792
0·6891 0·6891	- 1	0·4096 0·4096	3.924
0·6745 0·6745	1 0	0·6539 0·6539	4 ·001
0.3109	4	0.5904	4.239
$0.8255 \\ 0.8255$	$\frac{1}{2}$	$0.1539 \\ 0.1539$	4 ·265
0.5030	ł	0.0979	4.266
	Cs ₍₂₎ at	0.4766, 1, 0.8284	:
\boldsymbol{x}	y	z	Dist. (Å)
0.8109	ł	0.9096	3.581
0.3109	ł	0.5904	3.634
$0.1745 \\ 0.1745$	$\frac{1}{2}$	$0.8461 \\ 0.8461$	3.649
0.5030	ł	1.0979	3.653
$0.6745 \\ 0.6745$	$\frac{1}{2}$	0·6539 0·6539	3 ⋅662
0·4970 0·4970	- 1	$0.9021 \\ 0.9021$	4 ·016

Br⁻ ions of Cs₂ are closer to it than the nearest neighbor of Cs₁. This is evidently the reason for the temperature factor of Cs₂ being so much smaller than that of Cs₁. Further, the nearest neighbor of Cs₂ is Br₂ at a distance of 3.581 Å, slightly closer than the Cs-Br distance (3.615 Å; Shulz, 1951) found in CsBr. Thus it seems apparent that the distortion of the $ZnBr_4^{-2}$ tetrahedron is caused by the pressure of the Cs² ion.

This investigation was supported by the U.S. Public Health Service under grant A-2241.

References

- BRADLEY, A. J. (1935). Proc. Phys. Soc. 47, 879.
- BREHLER, B. (1957). Z. Kristallogr. 109, 68.
- CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 65.
- HELMHOLTZ, L. & KRUH, R. F. (1952). J. Amer. Chem. Soc. 74, 1176.
- MACGIILAVRY, C. H. & BIJVOET, J. H. (1936). Z. Kristallogr. A, 94, 249.
- PORAJ-KOSHITZ, M. A. (1956). Kristallografya, 1, 291.
- SCHULZ, L. G. (1951). Acta Cryst. 4, 487.
- THOMAS, L. H. & UMEDA, K. (1957). J. Chem. Phys. 26, 293.